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First-order nonequilibrium phase transition in a spatially extended system
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Institut für Theoretische Physik, Universita¨t Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany

~Received 12 July 1996; revised manuscript received 15 April 1997!

We investigate a system of harmonically coupled identical nonlinear constituents subject to noise in different
spatial arrangements. For global coupling, we find for infinitely many constituents the coexistence of several
ergodic components and a bifurcation behavior like infirst-orderphase transitions. These results are compared
with simulations for finite systems both for global coupling and for nearest-neighbor coupling on two- and
three-dimensional cubic lattices. The mean-field-type results for global coupling provide a better understanding
of the more complex behavior in the latter case.
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PACS number~s!: 02.50.2r, 05.40.1j, 47.20.2k, 47.65.1a
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The influence of noise on nonlinear systems is the sub
of intense experimental and theoretical investigations@1#.
Zero-dimensional models considering stochastic differen
equations for a macroscopic order parameter homogen
in space and coupling in a multiplicative way to the no
exhibit noise-induced transitions such as transitions betw
unimodal and bimodal stationary distributions@2,3#; cf. also
@4# and references therein. Multiplicative noise is found
many different fields@1,4# including, e.g., directed percola
tion @5#; see also@6#.

Real systems such as solids and liquid crystals are c
acterized by interactions between spatially distributed c
stituents. Spatially extended noisy systems described by
chastic partial differential equations are difficult to trea
analytically; for recent studies see, e.g.,@7,8#. Simulations,
though expensive, may provide some guide to a theore
understanding of those systems@9–13#.

Models with global coupling of nonlinear noisy constit
ents are by far easier to investigate and allow even for a
lytical results @9,10,14–17#. For example, Shiino@16# was
able to extend the concept of phase transitions to nonequ
rium phenomena described by globally coupled nonlinear
cillators subject to additive noise. More recently, Van d
Broeck et al. @9,10# demonstrated the appearance of
second-ordernoise-induced phase transition in a model w
globally coupled nonlinear constituents subject to multiplic
tive and additive noise, which shows no transitions in
absence of noise. In this paper we present a model c
structed in a spirit similar to@9# that exhibits afirst-order
noise-induced phase transition connected with a hard o
of the coexisting ergodic components of the system. Vary
parameters of the system or of the noise, the order of
phase transition may change, as we observed previously
zero-dimensional models@18#.

We investigate a system of harmonically coupled iden
cal nonlinear constituents under the influence of noise ac
simultaneously in additive and multiplicative ways. We co
sider two cases distinguished by the spatial arrangemen
theL constituents: the case of global coupling of all comp
nents and the case of nearest-neighbor coupling o
d-dimensional cubic lattice. In the case of global couplin
analytic results are obtained forL→` and are compared
with simulations forL5100 andL51000, respectively. Fur
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thermore, simulations were carried out for the case
nearest-neighbor coupling ind52 (L51003100) andd53
(L520320320). In these cases the results for global co
pling can be considered as mean-field approximation.

The variablesxi of the individual constituents at the la
tice sitesi obey the following stochastic differential equa
tions in the Stratonovich sense:

ẋi5 f ~xi !1g~xi !j i2
D

N (
j PN~ i !

~xi2xj !. ~1!

HereN( i ) denotes the set of involved neighbors of sitei .
The number of involved neighborsN is equal toL21 in the
case of global coupling and to 2d in the case of nearest
neighbor coupling. The parameterD controls the strength o
the spatial interactions. Thej i(t) represent zero mean spa
tially uncorrelated Gaussian white noise at pointi with the
autocorrelation function

^j i~ t !j j~ t8!&5s2d i j d~ t2t8!, ~2!

where s2 is the noise strength. For nearest-neighbor c
pling and suitable chosen parameters, Eq.~1! can be consid-
ered as a discretized version of a stochastic partial differ
tial equation with diffusive coupling.

The stationary Fokker-Planck equation for the probabi
density ofxi reads@9#

05
]

]xi
S 2 f ~xi !1

D

N (
j PN~ i !

~xi2^xj uxi&!

1
s2

2
g~xi !

]

]xi
g~xi ! D Ps~xi !, ~3!

where ^xj uxi&5*dxjxj Ps(xj uxi) is the steady-state cond
tional average ofxj , j PN( i ), givenxi at sitei .

For the case of global coupling, fluctuations disappea
the average 1/(L21)( j PN( i )^xj uxi& if L→`. Considering
the class of solutions for which this expression is indep
dent of lattice sitei , we can replace it by the steady-sta
mean valuê x&, which is self-consistently determined by

^x&5E
2`

`

dx xPs~x,^x&![F~^x&!. ~4!
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56 2659FIRST-ORDER NONEQUILIBRIUM PHASE TRANSITION . . .
Obviously, for finite lattices or coupling to a finite subset
neighbors this replacement represents a mean-field app
mation. Following Shiino@16#, one obtains the same resul
by replacing in Eq.~1! the spatial average (1/N)( j PN( i )xj by
the statistical averagêx&.

In this paper we consider a simple model, for which
nontrivial solution of Eq.~4! is not emerging from zero bu
appears with a jump to a nonzero value at a critical value
the control parameter. The model is specified by

f ~x!5ax1x32x5, g~x!511x2. ~5!

For the model with global coupling the stationary probabil
density is

Ps~x,^x&!}~11x2!3/s2 21 expH s22F2x21
D2a12

11x2

1D^x&S x

11x2 1arctan~x! D G J . ~6!

Without spatial coupling (D50) the model shows the
following bifurcation behavior. In the deterministic cas
(s250) the stationary solution undergoes a subcritical bif
cation atac50. The multiplicative noise shifts the bifurca
tion threshold of the maximum of the stationary probabil
density toac5s2. For weak noise (s2,1) the bifurcation is
subcritical, whereas fors2>1 it is supercritical.

In the following we mainly restrict ourselves, for the sa
of convenience, to the cases251, where the noise intensit
is just sufficient to produce a change from the determini
subcritical bifurcation into a supercritical bifurcation. The
the extreme values of the stationary probability density
xst50 and, ifa.1, xst56(a21)1/4.

The global coupling (DÞ0) favors a coherent behavior o
the spatially distributed components, which is, in a sense
effect opposite to the noise and will ‘‘restore’’ the subcritic
bifurcation. Hence we expect to observe a first-order n
equilibrium phase transition.

The bifurcation behavior of̂x& is governed by the self
consistency condition~4!. Since for our modelF(^x&) is an
odd function of ^x& we always have the solution̂x&50.
Moreover, pairs of new stable and unstable nonzero solut
may occur in certain parameter ranges. Only stable solut
can be observed in simulations. We remark without pr
that F8(^x&),1 is sufficient for stability~cf. @16#!. The ex-
istence of more than one stable solution leads to the e
tence of several corresponding stationary probability de
ties Ps(x,^x&). Therefore, a phase transition breaking t
ergodicity of the system is expected in the case of glo
coupling.

The typical behavior ofF(^x&) for our model is sketched
in Fig. 1. Whereas the model investigated by Van den B
eck et al. @9# exhibits asecond-orderphase transition, we
find a first-order phase transition connected with ahard on-
set of the nontrivial stable solution of the self-consisten
condition for our model in a certain parameter range wh
the model without spatial coupling exhibits only the trivi
solution ^x&50.

The phase diagram given in Fig. 2 confirms the intuiti
picture drawn above: The spatial coupling favors coher
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behavior of the components, acting thus oppositely to
noise. The critical value ofa is reduced with increasing cou
pling strengthD and above a critical strength ofD the tran-
sition is of first order.

Figure 3 shows the different solutions of the se
consistency equation~4! for the order parameter^x& leading
to different ergodic components of the system as a func
of the parametera, the spatial coupling constantD, and the
noise strengths2, respectively. In all cases a hard onset
the nontrivial stable solutions can be observed.

It is instructive to compare the results obtained by so
tion of the self-consistency condition~4! with simulations on

FIG. 1. Solutions of the self-consistency equation~4!,
F(^x&)5^x&, in three typical cases.^x&50 is always a solution; in
the case of the dash-dotted line it is the only solution. In the c
considered by Van den Broecket al. @9# ~dashed line! we have two
stable solutionŝx&56xs ~full circle! and^x&50 is unstable. In the
case considered here~solid line! we have in addition to the stabl
solution ^x&50 a pair of unstable solutionŝx&56xu ~empty
circle! and a pair of stable solutions^x&56xs ~full circle!. In con-
trast to the former case, in the latter case the nontrivial solutions
not emerge continuously from̂x&50 but appear with nonzero
value at the critical value of the control parameter. This indicate
first-order nonequilibrium phase transition.

FIG. 2. Phase diagram in the case of global coupling fors251.
For smallD we have a second-order transition. The spatial coupl
favors a coherent behavior of the constituents, acting thus op
sitely to the noise. With increasing coupling strengthD the critical
value of a is reduced and above a critical strength ofD the first-
order transition of the model without noise and spatial coupling
‘‘restored.’’ The solid and dashed lines denote first- and seco
order nonequilibrium phase transitions, respectively. The numbe
ergodic components is 3 in the shadowed region, 2 in the reg
above, and 1 in the region below. Hysteresis appears in the s
owed region.
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finite globally coupled systems of different size. We consid
a parameter setting where three different stable solution
Eq. ~4! exist. For small systems (L5100) the ergodicity
breaking is not perfect. We still observe a few transitio
between the different ‘‘ergodic components’’ due to lar
fluctuations of^x(t)& around its stationary values. The tr
jectory of the spatial averagêx(t)&L5(1/L)( i 51

L xi(t) is
shown in Fig. 4. For larger systems (L51000) the fluctua-
tions become smaller and the system remains very long
side one of the ergodic components. In that case, there
practically no transitions. The initial conditions determi
which of the ergodic components is selected.

We also performed simulations of the stochastic differ
tial equation~1! for nearest-neighbor coupling on a thre
dimensional cubic lattice withL520320320 sites and on a
two-dimensional square lattice withL51003100 sites.
Qualitatively, one gets a behavior very similar to the case
global coupling. In Fig. 5 we compare the probability dens
Ps(x) at one lattice site given by Eq.~6! for the case of
global coupling with the results of simulations for neare
neighbor coupling on the three-dimensional lattice. Althou

FIG. 3. Stable solutions of the self-consistency equation~4! as a
function of the control parameters~solid lines! determine the er-
godic components. Unstable solutions~not shown here! cannot be
observed in simulations. The maxima of the stationary probab
density~dashed line! of the corresponding ergodic components~6!
exhibit qualitatively the same behavior. In all the diagrams we
serve at the critical value ahard onset of the nontrivial stable solu
tion corresponding to afirst-order transition. In~c! a reentrant be-
havior is found similar to that in@9#. The parameters are~a! s251
andD525, ~b! s251 anda521.5, and~c! a521.5 andD525.
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for the finite system there is noperfectseparation into dif-
ferent ergodic components, the trajectories remain very l
in the corresponding ‘‘basin of attraction.’’ The histogram
obtained by sampling those trajectories follow very clos
the probability densities of the ergodic components for g
bal coupling. The value ofxs for nearest-neighbor coupling
is about 10% smaller than for global coupling.

Simulations on the two-dimensional square lattice exh
a similar qualitative behavior; the quantitative agreem
with the results of the globally coupled model is, as e
pected, less satisfactory. Figure 6 compares the order pa
eter as a function ofa and s2 with the results for global
coupling. Although the bistable region is smaller than in t
case of global coupling, it no doubt exists. We remark t
the fluctuations~indicated by the error bars in Fig. 6! are
larger for the states witĥx&Þ0 than those for̂x&50, being
a clear indication of the multiplicative nature of the drivin
process. As in the case of global coupling, for t
L51003100 system the trajectory stays inside the ergo
component selected by the initial condition for a very lo

y

-

FIG. 4. Trajectory of the spatial averagê x(t)&L

5(1/L)( i 51
L xi(t) for the case of global coupling~L5100, s251,

a521.48, andD530!. The trajectory fluctuates preferably aroun
the mean valuesxs50 and xs560.94; sometimes large fluctua
tions lead to jumps between the ‘‘ergodic components.’’

FIG. 5. Probability densities forxi(t) at arbitraryi for the case
of global coupling~solid lines! as given by Eq.~6!. The ergodic
components correspond tôx&50, and xs50.94 ~s251, D525,
anda521.5!. These results are compared with simulations for
three-dimensional cubic lattice (L520320320) with nearest-
neighbor coupling. The probability densities~L and s! are ob-
tained by sampling 20 000 equidistant points within a trajectory
length t510 000 near̂ x&50 and xs50.85 separately. The plo
indicates that the globally coupled system gives a good idea of
qualitative and quantitative behavior of the system with near
neighbor coupling.
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56 2661FIRST-ORDER NONEQUILIBRIUM PHASE TRANSITION . . .
time. No jumps were observed in our simulations runn
typically over a timet55000. Jumps between the ergod
components induced by large fluctuations are observe
simulations of smaller systems. With increasing size th
become less frequent; cf. Fig. 7.

In this paper we investigated a model that exhibits afirst-
order nonequilibrium phase transition due to a hard onse
the coexistence of several stable ergodic components o
system. Other models that we investigate at present ex
the same behavior. We also found changes from seco
order to first-order transitions by tuning parameters of
noise or the system. In any case, both the nonlinear te
and the interplay between deterministic and stochastic eff
determine the order of the transition. In previous wo
@9–13# only second-order noise-induced nonequilibriu
phase transitions have been observed. In a different con
a system of coupled Duffing oscillators was used to desc

FIG. 6. Comparison of the order parameter^x& obtained by
simulation for a two-dimensional square lattice of si
L51003100 with the results for the globally coupled model~thick
solid line! for D530. The diamonds denote the average ofxi(t)
over all lattice sites and over a time span of order 100 during wh
no jumps between the ergodic components occur. The error
indicate the time average over the standard devia
$(1/L)( i@xi(t)2^x(t)&L#2%1/2. ~a! and~b! show the dependence o
the control parametera (s251) and the noise strengths2

(a521.5), respectively. The coexistence of the solutions w
^x&Þ0 and ^x&50 over a range of parameters as for the case
global coupling is obvious.
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a liquid to crystal transition@19#. For this model mean-field
theory yields a first-order nonequilibrium transition, which
preserved includingadditivenoise.

Our results may be of interest in the context of expe
mental investigations in electrohydrodynamic convection
nematic liquid crystals subject to thermal fluctuations~addi-
tive noise! and/or an external stochastic voltage~multiplica-
tive noise!. There are experimental hints@20# that the first
transition from the homogeneous state to the structured s
might be weakly hysteretic although, the deterministic the
predicts a supercritical bifurcation.

Note added. After completion of this work we got knowl-
edge of a paper by S. Kim, S. H. Park, and C. S. Ryn@Phys.
Rev. Lett.78, 1616~1997!# where a first-order noise-induce
transition on a different system of globally coupled oscil
tors is described.

Support by the Deutsche Forschungsgemeinschaft D
under Grant No. Be 1417/3 is gratefully acknowledged.
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FIG. 7. Trajectories of the spatial average^x(t)&L for the two-
dimensional square lattice of size~a! L510310 and~b! L518318
for the same parameters as in Fig. 4. In the smaller system freq
jumps between the ergodic components are observed; with incr
ing size of the system these events are rarefied. Already for a siz
L51003100 no jumps were observed in time spans of order 50
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