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First-order nonequilibrium phase transition in a spatially extended system

R. Muller, K. Lippert, A. Kuhnel, and U. Behn
Institut fir Theoretische Physik, Universttheipzig, Augustusplatz 10, D-04109 Leipzig, Germany
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We investigate a system of harmonically coupled identical nonlinear constituents subject to noise in different
spatial arrangements. For global coupling, we find for infinitely many constituents the coexistence of several
ergodic components and a bifurcation behavior likéirst-order phase transitions. These results are compared
with simulations for finite systems both for global coupling and for nearest-neighbor coupling on two- and
three-dimensional cubic lattices. The mean-field-type results for global coupling provide a better understanding
of the more complex behavior in the latter case.
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The influence of noise on nonlinear systems is the subjedhermore, simulations were carried out for the case of
of intense experimental and theoretical investigatiphp  nearest-neighbor coupling th=2 (L=100x 100) andd=3
Zero-dimensional models considering stochastic differentia(L=20X20X20). In these cases the results for global cou-
equations for a macroscopic order parameter homogeneo@ng can be considered as mean-field approximation.
in space and coupling in a multiplicative way to the noise The variabless; of the individual constituents at the lat-
exhibit noise-induced transitions such as transitions betweetice sitesi obey the following stochastic differential equa-
unimodal and bimodal stationary distributiofs3]; cf. also  tions in the Stratonovich sense:

[4] and references therein. Multiplicative noise is found in b
many different field41,4] including, e.g., directed percola- L £y Ne 2 oy
tion [5]. see alsd6]. Xi=f(x)+9(x) &~ 3 ,-EENU) (Xi—X)). (&)

Real systems such as solids and liquid crystals are char- . i i .
acterized by interactions between spatially distributed conHere M(i) denotes the set of involved neighbors of site
stituents. Spatially extended noisy systems described by std"€ number of involved neighbofé is equal toL —1 in the
chastic partial differential equations are difficult to treat €aS€ of global coupling and tod2in the case of nearest-
analytically; for recent studies see, eff,8]. Simulations, neighbor coupling. The parametercontrols the strength of

though expensive, may provide some guide to a theoreticd'® Spatial interactions. Th&(t) represent zero mean spa-

understanding of those systefigs-13). tially uncorrelated Gaussian white noise at pairwith the
Models with global coupling of nonlinear noisy constitu- autocorrelation function
ents are by far easier to investigate and allow even for ana- / /
o J (&(DE(1))=028;8(t-1"), @

lytical results[9,10,14—17. For example, Shiing16] was

able to extend the concept of phase transitions to nonequililiyhere 2 is the noise strength. For nearest-neighbor cou-
rium phenomena described by globally coupled nonlinear ospling and suitable chosen parameters, @g.can be consid-
cillators subject to additive noise. More recently, Van denered as a discretized version of a stochastic partial differen-
Broeck etal. [9,10] demonstrated the appearance of atjal equation with diffusive coupling.
second-ordenoise-induced phase transition in a model with  The stationary Fokker-Planck equation for the probability
globally coupled nonlinear constituents subject to multiplica-density ofx; reads[9]

tive and additive noise, which shows no transitions in the 5

absence of noise. In this paper we present a model con- _d

structed in a spirit similar t¢9] that exhibits afirst-order 0= Ix; ( —fx)+ Nj;f\/(h (i —{xj[xi))
noise-induced phase transition connected with a hard onset

of the coexisting ergodic components of the system. Varying a?

parameters of the system or of the noise, the order of the + 57 9(x) (9_Xi9(xi) Ps(Xi), &)
phase transition may change, as we observed previously for

zero-dimensional mode(4.8]. Where(xj|xi>=fdxjx]-PS(xj|xi) is the steady-state condi-

We investigate a system of harmonically coupled identi-tional average ok;, j e Vi), givenx; at sitei.
cal nonlinear constituents under the influence of noise acting For the case of global coupling, fluctuations disappear in
simultaneously in additive and multiplicative ways. We con-the average 1I(—1)X;_ i) (Xj|x;) if L—o. Considering
sider two cases distinguished by the spatial arrangement afie class of solutions for which this expression is indepen-
theL constituents: the case of global coupling of all compo-dent of lattice sitel, we can replace it by the steady-state
nents and the case of nearest-neighbor coupling on mean valugx), which is self-consistently determined by
d-dimensional cubic lattice. In the case of global coupling, .
analytic results are obtained fdr—o and are compared _ —
with simulations forL = 100 andL = 1000, respectively. Fur- x) jﬁxdx XPLOGO)ZF((X))- @
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Obviously, for finite lattices or coupling to a finite subset of
neighbors this replacement represents a mean-field approxi-
mation. Following Shiind16], one obtains the same results
by replacing in Eq(1) the spatial average (M) 2| . yiyX; by

the statistical averagex).

In this paper we consider a simple model, for which a
nontrivial solution of Eq.(4) is not emerging from zero but
appears with a jump to a nonzero value at a critical value of
the control parameter. The model is specified by

f(x)=ax+x3—x>% g(x)=1+x2. (5)

For the model with global coupling the stationary probability
density is
FIG. 1. Solutions of the self-consistency equatidd),
D-a+2 F({x))=(x), in three typical casegx)=0 is always a solution; in
1+x2 the case of the dash-dotted line it is the only solution. In the case
considered by Van den Broeek al.[9] (dashed lingwe have two
6 stable solutiongx)= = x; (full circle) and{x)=0 is unstable. In the
) 6) case considered hefsolid line) we have in addition to the stable
solution (x)=0 a pair of unstable solutionéx)==*x, (empty
Without spatial coupling D=0) the model shows the circle) and a pair of stablg solutiofx) = =X (full cirglg). In con-
following bifurcation behavior. In the deterministic case trast to the former_ case, in the latter case the nontrlv_lal solutions do
(2=0) the stationary solution undergoes a subcritical bifur-"°t émerge continuously fronix)=0 but appear with nonzero
cation ata,=0. The multiplicative noise shifts the bifurca- Y2'Ue at the critical value of the control parameter. This indicates a
tion threshold of the maximum of the stationary probabilityf'rs‘t'ordernoneqUIIIbrIum phase transition.
density toa,= o2. For weak noise¢?< 1) the bifurcation is
subcritical, whereas fos>=1 it is supercritical.

— X2+

Po(X,(x))*(1+ x2)3o? ~1 exp[ g2

X
+ D<x)( . +arctargx)

behavior of the components, acting thus oppositely to the

In the following we mainly restrict ourselves, for the sake N°iS€- The critical value dd is reduced with increasing cou-
of convenience, to the cag€= 1, where the noise intensity pling strengthD and above a critical strength &f the tran-

is just sufficient to produce a change from the deterministicition is of first order. , _
subcritical bifurcation into a supercritical bifurcation. Then Figureé 3 shows the different solutions of the self-
the extreme values of the stationary probability density ar&onsistency equatiof#) for the order parametei) leading
x,=0 and, ifa>1, x,= = (a— 1) to different ergodic components of _the system as a function
The global couplingD #0) favors a coherent behavior of ©f the parametea, the spatial coupling constadt, and the
the spatially distributed components, which is, in a sense, aff0iS€ strengtiv®, respectively. In all cases a hard onset of
effect opposite to the noise and will “restore” the subcritical "€ nontrivial stable solutions can be observed.
bifurcation. Hence we expect to observe a first-order non-. !t IS instructive to compare the results obtained by solu-
equilibrium phase transition. tion of the self-consistency conditidd) with simulations on
The bifurcation behavior ofx) is governed by the self-
consistency conditiod). Since for our modeF ((x}) is an ,
odd function of(x) we always have the solutiofx)=0. '
Moreover, pairs of new stable and unstable nonzero solutions \
may occur in certain parameter ranges. Only stable solutions \
can be observed in simulations. We remark without proof !
that F' ((x))<1 is sufficient for stability(cf. [16]). The ex- -1F
istence of more than one stable solution leads to the exis-
tence of several corresponding stationary probability densi- -2
ties P(x,(x)). Therefore, a phase transition breaking the
ergodicity of the system is expected in the case of global

coupling. . . .
. . . FIG. 2. Phase diagram in the case of global couplingfor 1.
The typical behavior of ({x)) for our model is sketched For smallD we have a second-order transition. The spatial coupling

in Fig. 1. Whereqs_the model investigated by Va.n. den Bro'favors a coherent behavior of the constituents, acting thus oppo-
eck et al. [9] exhibits asecond-ordemphase transition, we

i . " . sitely to the noise. With increasing coupling strenBttthe critical
find afirst-order phase transition connected witthard on- 514e ofa is reduced and above a critical strengthDofthe first-

set of the nontrivial stable solution of the self-consistencyyger transition of the model without noise and spatial coupling is
condition for our model in a certain parameter range Whereyesiored.” The solid and dashed lines denote first- and second-
the model without spatial coupling exhibits only the trivial order nonequilibrium phase transitions, respectively. The number of
solution(x)=0. ergodic components is 3 in the shadowed region, 2 in the region

The phase diagram given in Fig. 2 confirms the intuitiveabove, and 1 in the region below. Hysteresis appears in the shad-
picture drawn above: The spatial coupling favors coherendwed region.
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FIG. 4. Trajectory of the spatial averaggXx(t)),
=(1/L)EiL:lxi(t) for the case of global coupling- =100, 0?=1,

041 I a=—1.48, andD = 30). The trajectory fluctuates preferably around
00 | , | . the mean valuegx;=0 andx;=*+0.94; sometimes large fluctua-
’ 20 40 60 80 100 tions lead to jumps between the “ergodic components.”
. : . for the finite. system there is rperft_actseparation .into dif-
12- (© - ferent ergodic components, the trajectories remain very long
[ - in the corresponding “basin of attraction.” The histograms
osH T~o i obtained by sampling those trajectories follow very closely
z) \\\ the probability densities of the ergodic components for glo-
0.4 R . bal coupling. The value ofg for nearest-neighbor coupling
R is about 10% smaller than for global coupling.
0.0; 15 55 35 Simulations on the two-dimensional square lattice exhibit

a similar qualitative behavior; the quantitative agreement
g with the results of the globally coupled model is, as ex-
pected, less satisfactory. Figure 6 compares the order param-
eter as a function o and o> with the results for global
function of the control parametesolid lineg determine the er-  coupling. Although the bistable region is smaller than in the
godic components. Unstable solutiofiet shown herecannot be  case of global coupling, it no doubt exists. We remark that
observed in simulations. The maxima of the stationary probabilityhe fluctuations(indicated by the error bars in Fig) Gire
density(dashed ling of the corresponding ergodic compone(@s larger for the states wittx)# 0 than those fotx)=0, being
exhibit qualitatively the same behavior. In all the diagrams we ob-a clear indication of the multiplicative nature of the driving
serve at the critical value laard onset of the nontrivial stable solu- process. As in the case of global coupling, for the
tion corresponding to &irst-order transition. In(c) a reentrant be- L=100x 100 system the trajectory stays inside tf’1e ergodic

havior is found similar to that i9]. The parameters a(@) o°=1 component selected by the initial condition for a very lon
andD =25, (b) =1 anda= —1.5, and(c) a= — 1.5 andD =25. P y y long

FIG. 3. Stable solutions of the self-consistency equatiras a

finite globally coupled systems of different size. We consider
a parameter setting where three different stable solutions of
Eqg. (4) exist. For small systemsL&100) the ergodicity
breaking is not perfect. We still observe a few transitions
between the different “ergodic components” due to large
fluctuations of(x(t)) around its stationary values. The tra-
jectory of the spatial averagéx(t)), =(1/L)Sl_,x(t) is
shown in Fig. 4. For larger systemk € 1000) the fluctua-
tions become smaller and the system remains very long in-
side one of the ergodic components. In that case, there are
practically no transitions. The initial conditions determine
which of the ergodic components is selected.

We also performed simulations of the stochastic differen
tial equation(1) for nearest-neighbor coupling on a three-
dimensional cubic lattice with =20x 20X 20 sites and on a  three-dimensional cubic latticeL & 20x 20X 20) with nearest-
two-dimensional square lattice with =100x100 sites. neighbor coupling. The probability densitié$ and O) are ob-
Qualitatively, one gets a behavior very similar to the case ofained by sampling 20 000 equidistant points within a trajectory of
global coupling. In Fig. 5 we compare the probability density|ength t=10 000 nearx)=0 and xs=0.85 separately. The plot
Ps(x) at one lattice site given by Ed6) for the case of indicates that the globally coupled system gives a good idea of the
global coupling with the results of simulations for nearest-qualitative and quantitative behavior of the system with nearest-
neighbor coupling on the three-dimensional lattice. Althoughneighbor coupling.

FIG. 5. Probability densities fax;(t) at arbitraryi for the case
of global coupling(solid lineg as given by Eq(6). The ergodic
‘components correspond {x)=0, andx,=0.94 (0?=1, D=25,
anda=—1.5). These results are compared with simulations for the
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FIG. 6. Comparison of the order paramete) obtained by
simulation for a two-dimensional square lattice of size ! 1 ! 1
L=100x 100 with the results for the globally coupled modglick 0 1000 2000 ¢ 3000 4000 5000
solid line) for D=30. The diamonds denote the averagext)
over all lattice sites and over a time span of order 100 during which
no jumps between the ergodic components occur. The error bars FIG. 7. Trajectories of the spatial averaget)), for the two-
indicate the time average over the standard deviatiordimensional square lattice of siga L= 10X 10 and(b) L=18%18
{(AL)=i[xi(t) = (x(1))]1?¥2 (a) and (b) show the dependence on for the same parameters as in Fig. 4. In the smaller system frequent
the control parametem (o?=1) and the noise strengtla2 jumps between the ergodic components are observed; with increas-
(a=-—1.5), respectively. The coexistence of the solutions withing size of the system these events are rarefied. Already for a size of
(x)#0 and(x)=0 over a range of parameters as for the case ofL=100x 100 no jumps were observed in time spans of order 5000.
global coupling is obvious.

a liquid to crystal transitioi19]. For this model mean-field
time. No jumps were observed in our simulations runningtheory yields a first-order nonequilibrium transition, which is
typically over a timet=5000. Jumps between the ergodic Preserved includingdditive noise. _
components induced by large fluctuations are observed in Our results may be of interest in the context of experi-
simulations of smaller systems. With increasing size theynental investigations in electrohydrodynamic convection in
become less frequent; cf. Fig. 7. nematic liquid crystals subject to thermal fluctuatidaddi-

In this paper we investigated a model that exhibitsst- tive noisg and/or an external stochastic voltagmultiplica-

order nonequilibrium phase transition due to a hard onset ofiVe N0ise. There are experimental hin20] that the first
the coexistence of several stable ergodic components of t éansmon from the homogeneous state to the structured state

. ) . might be weakly hysteretic although, the deterministic theory
system. Other models that we investigate at present exhib redicts a supercritical bifurcation.

the same behavior. We_?"so found _changes from second- Note addedAfter completion of this work we got knowl-
order to first-order transitions by tuning parameters of theedge of a paper by S. Kim, S. H. Park, and C. S. Rghys.

noise or the system. In any case, both the nonlinear termgey, | ett. 78, 1616(1997] where a first-order noise-induced
and the_ interplay between determ|n|.s_t|c and stochgsnc effect$ansition on a different system of globally coupled oscilla-
determine the order of the transition. In previous workiq .« is described.

[9-13 only second-order noise-induced nonequilibrium
phase transitions have been observed. In a different context, Support by the Deutsche Forschungsgemeinschaft DFG
a system of coupled Duffing oscillators was used to describender Grant No. Be 1417/3 is gratefully acknowledged.
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